Product Brochure

/Inritsu

MP1590B

Network Performance Tester

All-In-One Next-Generation Network Testing SDH/SONET/OTN/PDH/DSn/Jitter/EoS/Ethernet/IP Analyzer

The dawn of the NGN era and the spread of high value-added and seamless networks are driving the need for high-level testing and evaluation of these networks and their network devices.
Using modular plug-in units, Anritsu's MP1590B supports performance, jitter, and EOS measurements of networks, equipment and devices with SDH/SONET/OTN/PDH/DSn interfaces. The MP1590B also supports both Ethernet and IP technologies with a variety of applications such as QoS and IPTV streaming service tests.
This tester family is the perfect tool for performing the wide range of measurements covering the physical to application layers needed for constructing next-generation networks.

- Simultaneous Multichannel Measurement
- An all-in-one instrument for measuring SDH/SONET/OTN/PDH/DSn/Jitter performance
- Supports EoS (GFP, VCAT, LCAS, Differential Delay) measurements
- Supports 10/100/1000M, Gigabit, and 10 Gigabit Ethernet measurements

MP1590B Main Frame

6-slot Integrated screen model

Built-in Windows ${ }^{\circledR}$ XP operating system Dimensions: $320(W) \times 177(H) \times 350(D) \mathrm{mm}$ Mass: 13 kg max. (excl. options and units)
*: Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States and other countries.

SDH/SONET/OTN/PDH/DSn/Jitter/EoS Unit

\square Measurement Units: Frame Generation/Detection
MU150110A Multirate Unit

- PDH/DSn Measurement
- SDH/SONET (STM-0/OC-1 to STM-64/OC-192) Measurement
- OTN (OTU1, OTU2) Measurement (Option-005)
- OTN (OTU1e, OTU2e) Measurement (Option-006)
- 10G Ethernet Measurement (Option-008)
- Multichannel Measurement (Option-010)

MU150101A 2.5/2.6G EoS Unit

- PDH/DSn Measurement
- SDH/SONET (STM-0/OC-1 to STM-16/OC-48) Measurement
- OTN (OTU1) Measurement (Option-05)
- EoS Measurement (Option-06, 07, 11, 12, 13, 14)

MU150125A 10/10.7G Jitter Unit

- Bit Rate: 52 Mbit/s to 10.7 Gbit/s
- Jitter Generation Measurement
- Jitter Tolerance Measurement
- Jitter Transfer Measurement

Interface: Optical Output Bit rate: $9.95328 \mathrm{Gbit} / \mathrm{s}, 10.709225 \mathrm{Gbit} / \mathrm{s}$

Interface: Optical/Electrical Differential Output Bit rate: $9.95328 \mathrm{Gbit} / \mathrm{s}, 10.3125 \mathrm{Gbit} / \mathrm{s}, 10.709225 \mathrm{Gbit} / \mathrm{s}$

MU150123A 10/10.7G Optical Unit (Rx Wide)

Interface: Optical Input
Bit rate: $9.95328 \mathrm{Gbit} / \mathrm{s}, 10.709225 \mathrm{Gbit} / \mathrm{s}$
MU150123B 10/10.7G Optical/Electrical Unit (Rx Wide)

MU150124B 10.3G Optical/Electrical Unit (Rx Wide)

Interface: Optical/Electrical Differential Input
Bit rate: 9.95328 Gbit/s, 10.3125 Gbit/s (without jitter measurement), 10.709225 Gbit/s

Interface: Optical/Electrical Differential Input
Bit rate: 9.95328 Gbit/s (without jitter measurement), 10.3125 Gbit/s, 10.709225 Gbit/s (without jitter measurement)

Ethernet Units

Express Flow Module: High-port-density models supporting Multiflow Counter, High Resolution Traffic Monitor, Ethernet OAM, Link Flap

MU120131A 10/100/1000M Ethernet Module

Interface: 10BASE-T, 100BASE-TX, 1000BASE-T Port Number: 12

Interface: 1000BASE-SX/LX/LE/LR (SFP Module) Port Number: 8

```
Interface: 10GBASE-SR/LR (SFP+ Module)
```

Port Number: 4

■ Power Protocol Module: High-performance protocol models supporting Multiflow Counter, High Resolution Traffic Monitor, Ethernet OAM, Traffic Impairment Emulator

Interface: 10BASE-T, 100BASE-TX, 1000BASE-T Port Number: 4

Interface: 10BASE-T, 100BASE-TX, 1000BASE-T,
1000BASE-SX/LX/LE/LR (SFP Module)
Port Number: 4 (Electrical: 2; Optical: 2)

SDH/SONET/OTN/PDH/DSn/10G Ethernet Performance Measurements

The MP1590B supports ITU-T, Telcordia and IEEE compliance tests of 1.5 M to 11.1 G SDH/SONET/OTN/PDH/DSn/10G Ethernet equipment. The following functions can be used to evaluate the performance of networks, equipment, and devices supporting these standards:

- Multichannel Measurement
- Error/Alarm Measurements
- Alarm Detection and Removal Conditions Setting Function
- Delay Time Measurement
- APS (Automatic Protection Switching) Measurement
- Through Mode Function
- Overhead Editing Function
- Monitor Functions
- Unframe BER Measurement
- Variable Frequency Offset Function
- FEC Performance Measurement
-10G Ethernet Measurement
Sending remote control commands via the Ethernet/RS-232C/ GPIB interfaces makes it easy to configure a customized measurement environment for maintenance, installation, R\&D, and manufacturing.

Different bit rates can be specified for MP1590B Tx and Rx signals. This means that line- and client-side equipment and networks can be tested simultaneously, supporting configuration of an efficient measurement environment.

See page 6 for function details, page 14 for the list of functions and supported mappings, and page 18 for the specifications of the main frame and plug-in modules.

SDH/SONET/OTN Jitter Measurements

Jitter is a key index expressing the performance and quality of SDH/SONET and OTN transmission equipment and devices. Jitter evaluation is also an important part of assuring interoperability and network stability.
The MP1590B supports the following ITU-T and Telcordiacompliant SDH/SONET/OTN measurements from $52 \mathrm{Mbit} / \mathrm{s}$ to 10.7 Gbit/s:

- Jitter Generation Measurement
- Jitter Tolerance Measurement
- Jitter Transfer Measurement

The user can set any mask standard values for these measurements. Because the MP1590B supports optical, electrical and electrical differential (10G band only) interfaces, network equipment jitter as well as device and optical module jitter can be measured. In the 10G band, jitter measurement of 10.3 Gbit/s transfers used by 10G Ethernet can be measured.

Anritsu is a proactive member of the ITU-T standardization working groups and has extensive knowledge and practical experience of jitter measurement that is incorporated in the MP1590B.

When required, a high-accuracy jitter measurement option can be installed in the MP1590B to perform high-accuracy and highrepeatability measurements with calibration based on Appendix VIII of the April 2005 ITU-T O. 172 standard. But even without this option, jitter measurement is still in full compliance with the April 2005 ITU-T 0.172 standards.

See page 8 for details of individual functions, page 14 for the list of functions and supported mappings, and page 18 for the specifications of the main frame and plug-in modules.

The MP1590B supports the following measurements for nextgeneration SDH/SONET:

- GFP-F, LEX, LAPS (X.86), PPP Encapsulation
- Virtual Concatenation Member Editing Function
- Virtual Concatenation Group (VCG) Auto-detect Function
- Differential Delay Add/Monitor Function
- LCAS Autonegotiation Function
- LCAS Sequence Generation/Capture Function
- Path Monitor Function

See page 9 for function details.

The following measurements are supported because the MP1590B can generate GFP-F, LEX, and LAPS (X.86) encapsulated EoS frames, even when VLAN tags and IP and TCP/UDP headers are attached. Adding an Ethernet unit to the configuration enables a seamless client- and line-side measurement environment using only one main frame.

- Load Tests
- Stream Generation
- Variable Tx Clock Offset

Traffic Measurement

- Various Counters
- Packet Jitter/Latency
- Through Mode
- Frequency Measurement

See page 10 for function details.
Packet Analysis

- Packet Capture/Protocol Decode

In addition to EoS measurements, the MU150101A 2.5/2.6G EoS Unit used here also supports POS measurements and performance measurements of $1.5 \mathrm{Mbit} / \mathrm{s}$ to $2.6 \mathrm{Gbit} / \mathrm{SDH} /$ SONET/OTN/PDH/DSn, facilitating a wide range of applications.

See pages 13 and 14 for the list of functions and supported mappings, and page 18 for the specifications of the main frame and plug-in modules.

Ethernet Performance Measurement

The MP1590B supports 10/100/1000BASE-T, 1000BASE-X, and 10GBASE-X Ethernet measurements using plug-in Ethernet modules. As a result, a single unit can measure the performance MSPP/MSTP equipment used in combination with SDH/SONET/ OTN/PDH/DSn plug-in modules.
By taking advantage of the Ethernet module functions listed on the right, they can also be used as genuine IP testers for Ethernet interfaces. See the MD1230 family catalog for the individual Ethernet module specifications.

The MP1590B supports all the key tests of devices and networks, such as load tests, performance tests, traffic measurements, and packet analysis. They can also be used for IPV6 measurements, RFC2544/RFC2889 auto-measurements, auto-negotiation analysis, Ethernet OAM emulation, and more.

Load Tests

- Stream Generation
- Variable Tx Clock Offset
- Traffic Impairment Emulation

Traffic Measurement

- Various Counters/Multiflow Counters
- High-Resolution Traffic Monitor
- Packet Jitter/Latency
- Through Mode
- Frequency Measurement
- Packet Analysis
- Packet Capture/Protocol Decode
- Auto-measurement
- RFC2544/RFC2889 Auto-measurement

[^0]
Individual Applications

SDH/SONET/OTN/PDH/DSn/10G Ethernet Performance Measurements

\square Multichannel Measurement

SDH/SONET signal channel configurations ranging from STM-0/OC-1 to STM-64/OC-192 are detected automatically and the performance (errors, alarms, BER, APS, delay time) of all channels including both high and low order (max. 5,376 channels at VC11/VT1.5) can be measured simultaneously, supporting correlation confirmation between channels as well as greatly reduced measurement times.

Error/Alarm Measurements

Errors (such as FAS, BIP-8, and B1/B2/B3) and alarms (such as LOF, LOM, and AIS) can be generated at any timing and counted or monitored by the MP1590B for stress testing SDH/SONET and OTN equipment.

Error Monitor Screen
Alarm Detection and Removal Condition Setting Function
This function changes the conditions for detecting and removing alarms, making it easy to stress test ITU-T and Telcordiacompliant equipment and networks. This greatly simplifies fault testing.

\square Delay Time Measurement

Network delay is known to be a key factor that directly impacts network quality. This measurement supports measurement of payload data transmission quality to the order of $0.1 \mu \mathrm{~s}$.

APS Measurements

The Auto Protection Switch (APS) test function checks of equipment switching time with 0.1 ms resolution. The switching time until the fault condition triggered by an error or alarm is released can be measured to check standards-compliant rerouting caused by faults.

APS Measurement Results Screen

Through Mode Function

The MP1590B Through mode can be used for all supported bit rates. Connecting devices using this mode allows monitoring the actual signal quality as well as inserting various errors and alarms into the circuit path.

- Transparent Mode -

In this mode, the received signal is looped back as is which is useful for emulating the transmission path because bit error insertion is supported.

- Overhead Overwrite Mode -

In this loopback mode, the overhead part of the received SDH/ SONET/OTN signal can be overwritten with a new overhead specified by the MP1590B in order to emulate various errors and alarms that can occur in actual circuits.

Overhead Editing Function

Tx frame overhead can be changed easily to simplify stress and fault testing of ITU-T and Telcordia-compliant equipment and networks.

Overhead Test Screen

Monitor Function

Networks are easily monitored using a full line-up of versatile functions for monitoring errors/alarms, frequency, pointers, overhead, optical output power, and more.

Frequency Monitor Screen

Variable Frequency Offset Function

The MP1590B supports variation of the Tx clock in 0.1 ppm steps over a range of $\pm 100 \mathrm{ppm}$. They can also send signals synchronized with an external clock source to perform device and network stress tests using degraded clocks exceeding the ITU-T and Telcordia specified ± 20 ppm frequency range.

■ FEC Performance Measurement (OTN-specific)
This function for inserting Poisson-distributed random errors specified by ITU-T 0.182 supports easy and high-reproducibility validation of the error-correction performance of FEC decoders, avoiding the use of external equipment such as noise generators. Burst error insertion provides an efficient method of validating FEC burst-error correction performance.

10G Ethernet Measurement

The quality of 10G Ethernet equipment and networks can be evaluated by measuring throughput, $B E R$, sequence errors, and latency. In addition, detailed analysis of the 10G Ethernet Physical layer is supported by functions including measurement of the 64B/66B encoding used by the PCS (Physical Coding Sublayer) layer, LFS (Link Fault Signaling) which performs warning notifications at faults, clock frequency variations, optical power, etc.

LFS Capture Screen

SDH/SONETIOTN Jitter Measurements

Using the MU150125A 10/10.7G Jitter Unit supports jitter generation and measurement for SDH/SONET/OTN 52 Mbit/s to 10.7 Gbit/s equipment. Jitter of optical modules such as XFP can be measured by adding options supporting 10.3G.

Jitter Measurements

There are three types of jitter measurement, depending on the purpose, as shown below. The MP1590B simplifies each of these measurements.

- Jitter Generation Measurement

The jitter generated at the output side of equipment and devices is measured to check that it is better than the standard value established by ITU-T and Telcordia.

- Jitter Tolerance Measurement

The jitter tolerance at the input side required for equipment and devices to operate normally is measured to check that it is better than the standard value established by ITU-T and Telcordia.

- Jitter Transfer Measurement

The jitter attenuation characteristics between the jitter input to equipment and devices and the output side is measured to check that it is better than the standard value established by ITU-T and Telcordia.

There is a correlation between jitter generation and jitter tolerance measurements: if both meet the standards, network connection compatibility is assured. Jitter transfer characteristics are a standard for curbing accumulated jitter caused by each unit of connected transmission equipment. Jitter transfer can be a major issue when there is a large number of elements in a long-distance network.

\square High-Accuracy Jitter Measurements

The MP1590B support a high-accuracy jitter measurement (Option-30) for performing calibration based on the true jitter measurement standard outlined in Appendix VIII of the ITU-T O. 172 standard. Installing this option suppresses randomness in the generated jitter to $\pm 5 \mathrm{mUI}$, permitting high-accuracy and high-repeatability jitter measurement.

Note 1:
This option can be added to the main frame before delivery. But it cannot be added after.
Note 2:
This option assures high-accuracy jitter measurement only when the factory installation conditions remain unchanged. If a plug-in unit installed along with Option-30 is subsequently replaced or removed, or if another plug-in unit is installed, high-accuracy jitter measurement is no longer assured. However, the function and performance of other measurements (excluding highaccuracy jitter measurement) are still assured.
Note 3:
This option requires periodic calibration at shipment and annually thereafter.

D Differential Electrical Interface

Using the MU150121B/23B/24B modules with differential electrical interfaces for 9953M, 10.3G and 10.7G rates supports jitter measurement of the electrical differential interface of optical transceiver modules, such as XFP modules.
Conventionally, jitter measurement of electrical interfaces is performed using framed signals for single-end electrical interfaces. However, measuring the jitter of an optical transceiver module, such as an XFP module, with such single-ended electrical differential interfaces causes large variations in the jitter amount due to the impact of polarity and test patterns. This prevents accurate jitter measurement.
Consequently, it is essential use a differential electrical interface for jitter measurement.

User Mask Settings

The MP1590B can set masks defined by the ITU-T and Telcordia standards as well as any user-defined masks, such as masks with standards-compliant margins.

Jitter Tolerance Mask Setting Screen

Jitter Transfer Mask Setting Screen

EoS (Ethernet over SDH/SONET) Measurements

\square Virtual Concatenation (VCAT)

Both high and low-order VCAT are supported. The Virtual Concatenation Group (VCG) can be set for any member position (Channel) and sequence (SQ). Using the VCG auto-detection function allows the tester to capture connected VCG settings easily.

Differential Delay

The differential delay monitor function makes it easy to see the delay status and correlations of each VCG member at a glance. Furthermore, the differential delay generation function supports individual addition of a delay up to 512 ms to each VCG member. There are two built-in delay insertion methods: the Direct mode, in which the new delay is activated as soon as the delay value is input; and the Sweep mode, in which the current delay value is switched to the new input delay value after some period of time as sweeping progresses. Using the Sweep mode supports verification of equipment differential-delay tolerance under conditions emulating a real network where the status changes continually. This function supports both pear-to-pear and throughmode connections.
The differential delay settings support On/Off and sweep amount for each channel, with two target delay settings for configuring a near-to-live network environment.

Differential Delay Setting Screen

Differential Delay Monitor Screen

■ LCAS

LCAS emulation, sequence generation, monitor, capture and summary functions are all built-in. The LCAS generation function can generate a maximum of 64 sequences for easy evaluation of functions using multi-LCAS sequences. The LCAS capture function captures a maximum of 64 sequences for detailed analysis of LCAS sequence operations.

Path Monitor Function
This function supports individual monitoring of errors and alarms for all VCG members. It can be used for detailed analysis to confirm whether an error has occurred during EoS, virtual concatenation, and LCAS measurement. It can also check the member at which the error occurred.

Ethernet Performance Measurements

Load Tests

Stream Generation

This function makes it easy to generate multiflow packet streams and full－wire－rate high－load traffic，which are difficult to achieve manually in a real network environment．

Physical I／F	－Error Insertion	－Tx Stream	－Collision－Counter｜	－Capture	－Latency	－Ping
10	Distribution	Length	Protocol	VLAN．	Errors	
园1	Nest	Fixed 1518	TCP／Pv4	VLAN	None	
回2	Next	Fixed 1518	UDP／Pv4	VLAN	None	
园3	Nest	Fixed 4096	TCP／Pv4	VLAN	None	
回第4	Jump to \＃1 $\times 10$	Fixed 4096	UDP／PV4	VLAN	None	

Variable Clock Offset

A variable clock offset function for sending signals to network equipment is built in and supports clock tolerance measurements of equipment and devices．

Error Addition
This function adds packet errors to the Tx stream for creating easily reproduced fault conditions．

Traffic Impairment Emulator

This function emulates network impairments such as packet loss， errors，and delay that occur in real IPTV and VoIP traffic．It is used to evaluate service quality by assuming various types of network impairments．

Traffic Measurements

Counters

A full lineup of various counters supports traffic measurements by helping detect various network faults．

Multiflow Counter

Simultaneous monitoring of various traffic conditions（throughput， delay，frame loss）helps validate QoS controls and verify their effectiveness．

1 High－Resolution Traffic Monitor

Current measurement methods with a 1－second resolution are inadequate for verifying burst data impacting the quality of streaming services．This function performs monitoring with 1－ms time resolution to analyze burst data with previously unachievable accuracy for assured service quality．

Same Traffic Monitored at Different Resolution

Latency／Packet Jitter

This function supports monitoring of latency and packet jitter， which have serious quality impacts on real－time services．

Latency (s)	Unit1：3：2
Max	0.000000340
Min	0.000000336
Average	0.000000338
Current	0.000000340
Frames	10

Packet Analysis

Packet Capture

Packet capture is important for analyzing packets when a fault occurs. Powerful packet filtering extracts only the targeted data, which is then saved to internal memory for analysis and display of the packet contents.

Protocol Decode

The protocol decode function plays a key role in analysis of captured packet. Analysis using both Etherea ${ }^{\circledR}$ and Wireshark ${ }^{\circledR}$ is supported in addition to the built-in protocol decode functions.
*: Ethereal ${ }^{\circledR}$ is registered trademarks of Ethereal, Inc.
*: Wireshark ${ }^{\circledR}$ is registered trademarks of Gerald Combs.

Auto-measurement

■ RFC2544/RFC2889 Auto-measurement

Switch performance can be measured automatically using the IETF-compliant RFC2544 and RFC2889 tests. The one-touch button operations greatly reduce the time and effort of manual measurements, increasing productivity and efficiency.

RFC2544 Throughput Result

RFC2889 Result

Useful Functions

Remote Control from PC

Installing the MX159001B Control Software Package in PCs allows remote control of these testers using the same GUI. Multi-user support allows up to 8 users to share the Ethernet unit measurement ports. Connecting eight MP1590Bs in a cascade expands the number of slots to 48 .

Up to 8 main frames can be connected in a cascade configuration

Remote Command Interface

Sending text-based command messages to these testers using the remote command interface provides automated control for creating automatic test applications. The remote command interface supports the RS-232C, GPIB, and Ethernet (Option-01, 02, 03) Interfaces.

\square Report Function

Reports output in HTML format include the measurement conditions and results with graphs for counters, multiflow counters, latency, RFC2544 and RFC2889. Reports can be saved during measurement by using the pause function.

■ Optical Power Measurement, Optical Attenuation Function

This function measures the average power of the input optical signal when using an optical interface. The optional optical attenuator (Option-04) can attenuate optical output levels up to 30 dB ($\leq 2.6 \mathrm{Gbit} / \mathrm{s}$)/20 dB ($\geq 9953 \mathrm{Mbit} / \mathrm{s}$).

Trigger Output

A received signal can be used as a trigger output to external equipment. The trigger output can be synchronized to the clock output or divided clock output as well as to a frame. For example, linking the trigger output to an external sampling oscilloscope enables the MP1590B to evaluate errors and alarms at the same time the oscilloscope evaluates the waveform.

Ethernet Unit Functions

Model	MU120121A	MU120131A	MU120122A	MU120132A	MU120138A
Interface	10/100/1000BASE-T		$\begin{gathered} \text { 10/100/ } \\ \text { 1000BASE-T } \\ \text { 1000BASE-X } \end{gathered}$	1000BASE-X	10GBASE-R
Ports (Connector)	4 (RJ-45)	12 (RJ-45)	$\begin{gathered} 2 \text { (RJ-45) } \\ 2 \text { (SFP) } \\ \hline \end{gathered}$	8 (SFP)	4 (SFP+)
Clock Variation	\checkmark	\checkmark^{*}	\checkmark	$\checkmark{ }^{*}$	\checkmark^{*}
Link Flap		\checkmark		\checkmark	$\checkmark * 2$
Auto MDI/MDI-X	\checkmark	\checkmark	\checkmark		
Frame Generation					
Stream Generation (Tx Stream)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multi-Layer VLAN	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MAC Address Increment	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IP Address Increment	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TCP/UDP Port Number Increment	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Test Frame Addition	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Hardware Random Pattern	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Measurement					
Counter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multi-Flow Counter	$\checkmark * 3$	\checkmark	$\checkmark * 3$	\checkmark	\checkmark
Capture	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Decode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Latency	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ping	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ping6 (Option-12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Arrival Time Variation/Latency Variation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Through Mode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Monitor Mode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Address Swap Mode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Unframe BER Test	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Packet BER Test (Option-11)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Auto Negotiation Analysis (Option-15)*4			\checkmark	\checkmark	
Application Traffic Monitor (Option-20)	\checkmark	\checkmark	\checkmark	\checkmark	
Link Fault Signalling (Option-16)					
Link Fault Signalling (Module Option-03)					$\checkmark * 5$
Clock Measurement	\checkmark	\checkmark^{*}	\checkmark	$\checkmark * 1$	$\checkmark{ }^{*}$
PoE (Module Option-02)		\checkmark			
Ethernet OAM (Option-28)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Automatic Test					
RFC2544 with VLAN	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RFC2889 with VLAN (Option-10)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Protocol Emulation					
ARP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ICMP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
OSPF (Option-07)	\checkmark		\checkmark		
BGP-4	\checkmark		\checkmark		
ICMPv6 (Option-12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IGMPv2/IGMPv3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IGAP (Option-14)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MLD/MLDv2 (Option-12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MPLS (LDP/CR-LDP) (Option-08)	\checkmark		\checkmark		
MPLS (RSVP-TE) (Option-09)	\checkmark		\checkmark		
Other					
Traffic Impairment Emulator (Option-17)*3	\checkmark		\checkmark		

[^1]
SDH/SONET/OTN/PDH/DSn/10G Ethernet/Jitter/EoS Interface List

Typical Configuration				For SDH/ SONET/OTN/ PDH/DSn/ 10G Ethernet/ Performance Measurement	For SDH/SONET/OTN/Jitter Measurement				For EoS Measurement	For Ethernet Measurement	
Model/Slot Position		MP1590B	Slot 1	MU150110A	MU150110A	MU150110A	MU150110A	MU150101A	MU150101A	Blank	
		Slot 2	Blank								
		Slot 3	Blank	MU150121A	MU150121B	MU150121B	Blank	Blank	Blank		
		Slot 4	Blank	MU150123A	MU150123B	MU150124B	Blank	Blank	Blank		
		Slot 5	Blank	MU	MU150125A	MU150125A	MU150125A	Blank	Blank		
		Slot 6	Blank				MU150125A	Blank	Blank		
Item			Bit Rate	Interface							
	PDH/DSn		1.5 Mbit/s to $139 \mathrm{Mbit} / \mathrm{s}$	Electrical	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	$\begin{aligned} & \text { SDH/ } \\ & \text { SONET } \end{aligned}$		$52 \mathrm{Mbit/}$ to $156 \mathrm{Mbit/s}$	Electrical • Optical	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
			$622 \mathrm{Mbit} / \mathrm{s}$ to $2488 \mathrm{Mbit/s}$	Optical	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
			9953 Mbit/s	Electrical \cdot Optical	\checkmark	\checkmark	\checkmark	\checkmark			
		Electrical differential				\checkmark	\checkmark				
	OTN	2666 Mbit/s	Optical	$\checkmark * 1$	$\checkmark * 1$	${ }^{*}$	${ }^{*} 1$	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$		
		10.7 Gbit/s	Electrical • Optical	$\checkmark * 1$	$\checkmark{ }^{*}$	$\checkmark{ }^{1}$	$\checkmark{ }^{* 1}$				
		$11.04 \mathrm{Gbit} / \mathrm{s}$ to 11.09 Gbit/s	Optical	$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 1}$	$\checkmark^{* 1}$				
	$\begin{aligned} & \text { 10G } \\ & \text { Ethernet } \end{aligned}$	10.3 Gbit/s	Electrical • Optical	$\checkmark * 1$	$\checkmark * 1$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$				
			Electrical differential			$\checkmark{ }^{*}$	$\checkmark * 1$				
	Ethernet	$10 \mathrm{Mbit} / \mathrm{s}$ to $10 \mathrm{Gbit/s}$	Electrical • Optical	$\checkmark * 2$				$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	$\checkmark{ }^{*}$	
	Eos	$156 \mathrm{Mbit} / \mathrm{s}$ to $2488 \mathrm{Mbit/s}$	Optical					$\checkmark{ }^{* 1}$	$\checkmark^{* 1}$		
	PDH/DSn	1.5 Mbit/s to $139 \mathrm{Mbit} / \mathrm{s}$	Electrical								
	$\begin{aligned} & \text { SDH/ } \\ & \text { SNET } \end{aligned}$	$52 \mathrm{Mbit} / \mathrm{s}$ to $156 \mathrm{Mbit} / \mathrm{s}$	Electrical • Optical		\checkmark	\checkmark	\checkmark	\checkmark			
		$622 \mathrm{Mbit} / \mathrm{s}$ to $2488 \mathrm{Mbit/s}$	Optical		\checkmark	\checkmark	\checkmark	\checkmark			
		9953 Mbit/s	Electrical • Optical		\checkmark	\checkmark					
			Electrical differential			\checkmark					
	OTN	2666 Mbit/s	Optical		$\checkmark * 1$	$\checkmark{ }^{*}$	${ }^{* 1}$	$\checkmark * 1$			
		10.7 Gbit/s	Electrical • Optical		$\checkmark * 1$	$\checkmark * 1$					
		11.04 Gbit/s to 11.09 Gbit/s	Optical								
	10G Ethernet	10.3 Gbit/s*3	Electrical \cdot Optical				$\checkmark{ }^{* 1}$				
			Electrical differential				$\checkmark{ }^{* 1}$				

*1: Requires addition of separate option.
*2: Supports installation of Ethernet units in blank slots but with restrictions on position and number. See page 16 of the Selection guide for more details.
*3: 10.3 Gbit/s jitter measurement supports only No Frame.

Supported Mappings

\square OTN Mappings
OTU2 (10.71 Gbit/s) Mapping structure

OTU2e (11.09 Gbit/s) Mapping structure

OTU1 (2.66 Gbit/s) Mapping structure

OTU1e (11.04 Gbit/s) Mapping structure

10G Ethernet Mapping
10.3G Mapping structure

SDH Mappings

SDH Mapping structure

SDH Concatenation mapping structure

SDH Virtual concatenation mapping structure

SONET Mappings
SONET Mapping structure

SONET Concatenation mapping structure

*2: The maximum value of n is 16 . However, this value is 8 in the multichannel mode. Links cannot be made across the following groups.
AUG\#1 to AUG\#8, AUG\#9 to AUG\#16, AUG\#17 to AUG\#24,
AUG\#25 to AUG\#32, AUG\#33 to AUG\#40, AUG\#41 to AUG\#48, AUG\#49 to AUG\#56, AUG\#57 to AUG\#64

SONET Virtual concatenation mapping structure

*3: The maximum value of n is 16 . However, this value is 8 in the multichannel mode. Links cannot be made across the following groups. STS3c\#1 to STS3c\#8, STS3c\#9 to STS3c\#16, STS3c\#17 to STS3c\#24, STS3c\#25 to STS3c\#32, STS3c\#33 to STS3c\#40, STS3c\#41 to STS3c\#48, STS3c\#49 to STS3c\#56, STS3c\#57 to STS3c\#64

Selection Guide

Unit Insertion Positions

■ Plug-in Unit Insertion Table

Model/Order No.	Module Name	No. of Slots Required	No. of Ports	Max. No. Modules	Supported Slots	Current Consumption (A)*1
MU120121A	10/100/1000M Ethernet Module	1	4	2	3 to 6	19
MU120122A	Gigabit Ethernet Module	1	4	2	3 to 6	19
MU120131A	10/100/1000M Ethernet Module	1	12	2	3 to 6	15
MU120132A	Gigabit Ethernet Module	1	8	2	3 to 6	13
MU120138A	10 Gigabit Ethernet Module	1	4	3	3 to 6	11
MU150110A	Multirate Unit	2		1	1 to 2	10
MU150101A	2.5/2.6G EoS Unit	2		1	1 to 2	7
MU150121A	10/10.7G Optical Unit (Tx)	1		1	3	0.5
MU150121B	10/10.7G Optical/Electrical Unit (Tx)	1		1	3	0.5
MU150123A	10/10.7G Optical Unit (Rx Wide)	1	-	1	4	0.5
MU150123B	10/10.7G Optical/Electrical Unit (Rx Wide)	1		1	4	0.5
MU150124B	10.3G Optical/Electrical Unit (Rx Wide)	1		1	4	0.5
MU150125A	10/10.7G Jitter Unit	2		1	5 to 6	2

*1: Ensure that the total current consumption for all plug-in units inserted in the MP1590B does not exceed 38 A .

■ MP1590B Main Frame Options

Name	Model/Order No.
RS-232C Control	MP1590B-01
GPIB Control	MP1590B-02
Ethernet Control	MP1590B-03
OSPF Protocol	MP1590B-07
MPLS (LDP/CR-LDP) Protocol	MP1590B-08
MPLS (RSVP) Protocol	MP1590B-09
RFC2889 Benchmarking Test	MP1590B-10
Packet BER Test	MP1590B-11
IPv6 Expansion	MP1590B-12
IGAP Protocol	MP1590B-14
Auto Negotiation Analysis	MP1590B-15
Traffic Impairment Emulator	MP1590B-17
Application Traffic Monitor	MP1590B-20
Ethernet OAM	MP1590B-28
High Precision Jitter Analysis	MP1590B-30

\square Plug-in Unit Options

*: Order additional J1349A when Ethernet unit installed simultaneously in SDH/SONET/OTN/PDH/DSn unit and jitter unit configurations.
*1: This option is for the MU120138A 10 Gigabit Ethernet Module.

MP1590B Network Performance Tester

1	Test Window	Switches between one screen and four split screens
2	Set Up	Switches between Setup window and Test Window
3	Pointer	Performs same operation as mouse
4	Cursor	Set: Sets data Cancel: Deletes set data <> < >: Move cursor around screen
5	Input Keys	Input numeric values and data
6	Tree View	Toggles Tree View area display on/off
7	H.Reset	Resets history data
8	USB (2 Ports)	Connects USB devices
9	Keyboard	Connects PS/2 keyboard
10	Error	Starts/Stops error addition
11	Alarm	Starts/Stops alarm addition
12	Run/Stop	Starts/Stops measurement
13	Power	When Power lamp lit, quits MP1590B application and returns to Standby status When in Standby status (Standby lamp lit), launches MP1590B application
14	Screen Copy	Copies screen contents
15	Help	Displays Help screen
16	Microphone	Microphone for order wire
17	Trigger	Input: Connector for inputting external trigger for running APS test and capture Output: Connector for outputting errors/alarms and capture trigger
18	Power (main)	Switches main power on and off
19	CLK Source	Input: Connector for inputting reference signal for syncing Tx signal to reference signal Output: Connector for outputting reference signal synchronized to Tx signal
20	RS-232C	RS-232C interface connector
21	Ethernet	10BASE-T/100BASE-TX Ethernet connector for remote control.
22	GPIB	GPIB interface connector
23	VIDEO	VGA connector for external display 24 DCC/GCC
25	Plug-in slot	OTN) bytes, and for data and clock for add/drop Slot for plug-in unit
26	Functional Ground Terminal	Terminal for grounding frame to earth
1	Ionner	

Specifications

- MP1590B Network Performance Tester

Indicator	LCD	8.4", Color TFT, SVGA (800 × 600)
	LED	OTN: Frame, OTU, ODU, OPU SDH/SONET: Frame, MS/Line, AU/Path, TU/VT Other: Standby, HDD, Clock Loss, Power Fail, History, Signal Loss, Errors, Test Pattern, Jitter, PDH/DSn, Event, All Errors, All Alarms
OS		Windows ${ }^{\circledR}$ XP Professional
Storage Unit		HDD
Interface		RS-232C, GPIB, Ethernet (RJ-45), USB1.1 $\times 2$ ports, Keyboard (PS/2), VGA (15-pin mini D-sub)
	Reference Clock Input	
	Reference Clock Output	Frequency Connector Clock: $1.544 \mathrm{MHz}, 2.048 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ $1.544 \mathrm{MHz}, 2.048 \mathrm{MHz}, 2.048 \mathrm{Mbit} / \mathrm{s}, 5 \mathrm{MHz}, 10 \mathrm{MHz}:$ Data: $1.544 \mathrm{Mbit} / \mathrm{s}$ (BITS), $2.048 \mathrm{Mbit} / \mathrm{s}$ BNC (75Ω) Level/Code $1.544 \mathrm{Mbit} / \mathrm{s}:$ BANTAM (100 $\Omega)$ $1.544 \mathrm{Mbit} / \mathrm{s}: ~ A N S I ~ T 1.403 ~(B 8 Z S)$ Effective SDH/SONET/OTN Bit Rate. 2.048 Mbit : ITU-T G.703 Table 10 (HDB3) $1.544 \mathrm{MHz}, 2.048 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz:} \mathrm{TTL}$ (Rectangular)
	Trigger	Trigger Input: For capture/APS Measurement Trigger Output: Transmit error/alarm, Receive error/alarm, Capture trigger Level: TTL (Active High) Connector: BNC (75Ω)
	DCC/GCC	Data Input/Output: D1-D3 (192 kbit/s), D4-D12 (576 kbit/s), GCC0-2 (1312.4 kbit/s, $326.7 \mathrm{kbit} / \mathrm{s}$) Clock Output: 192 kHz , 576 kHz, 1312.4 kHz, 326.7 kHz Level: V. 11 Connector: 9-pin D-sub
Remote Control		Remote control using MX159001B via LAN (10BASE-T/100BASE-TX) In addition, remote command control supported using any of GPIB (Option-02), LAN (Option-03), RS-232C (Option-01)
Input Device		Pointing device, front keys
Power		$100 \mathrm{~V}(\mathrm{ac})$ to $120 \mathrm{~V}(\mathrm{ac}) / 200 \mathrm{~V}(\mathrm{ac})$ to $240 \mathrm{~V}(\mathrm{ac})$ (autoswitching), 50 Hz to 60 Hz
Power Consumption		≤ 500 VA
Operational Temperature and Humidity		5° to $40^{\circ} \mathrm{C}, 20$ to 80%
Dimensions and Mass		320 (W) $\times 177(\mathrm{H}) \times 350$ (D) mm, $\leq 13 \mathrm{~kg}$ (excluding options and plug-in units)
EMC		EN61326-1, EN61000-3-2
LVD		EN61010-1
Laser Safety		Depends on installed module. Refer to the safety standards for each module.
Number of Slots		6

- MP1590B-30 High Precision Jitter Analysis

Overview	Option for performing calibration of main frame using Phase Analysis calibration method outlined in ITU-T O.172 2005 April Appendix VIII standard with following specifications
Jitter Generation Measurement Accuracy	Accuracy: $\pm 20 \mathrm{mUlp}-\mathrm{p}$ (Approaches transmitter jitter ($\leq 100 \mathrm{mUlp}-\mathrm{p}$) standardized by phase analysis calibration method) Bit Rate: 9953.28 Mbit/s Interface: Optical Measurement Condition Optical Input Power: -12 to -10 dBm Measurement Period: $60 \mathrm{~s} / 1$ time Measurement Method: phase analysis calibration method (Appendix VIII) Accuracy Calculation: Measured 5 times at 60 s/time to calculate mean of measurement results Mean value accuracy of $\pm 20 \mathrm{mUlp}-\mathrm{p}$ for Tx jitter of $100 \mathrm{mUlp}-\mathrm{p}$ max. standardized by phase analysis method Filters: 20 kHz to $80 \mathrm{MHz} / 50 \mathrm{kHz}$ to $80 \mathrm{MHz}(9953 \mathrm{M})$ Tx Unit: MU150121A/B (9953 M) Frame: Appendix VIII compliant (margin reference format)
Jitter Generation Measurement Repeatability	Accuracy: $\pm 5 \mathrm{mUlp}-\mathrm{p}$ (Average of five measurements under constant measurement condition) Bit Rate: 9953.28 Mbit/s Interface: Optical Measurement Condition Optical Input Power: -12 to -10 dBm Measurement Period: $60 \mathrm{~s} / 1$ time Measurement Method: Loop-back Filters: 20 kHz to $80 \mathrm{MHz}, 50 \mathrm{kHz}$ to $80 \mathrm{MHz} / 4 \mathrm{MHz}$ to $80 \mathrm{MHz}(9953 \mathrm{M})$ Tx Unit: MU150121A/B (9953 M) Mapping: STS192c/STM-64c-Bulk (PRBS $2^{23}-1$ Inv.) (9953 M)
Transmitter Output Jitter	Jitter Value: <60 mUlp-p (MU150121A/B) Bit Rate: 9953.28 Mbit/s Interface: Optical Measurement Condition Measurement Method: Phase analysis calibration method (Appendix VIII) Accuracy Calculation: Mean of three measurements Filters: 20 kHz to $80 \mathrm{MHz} / 50 \mathrm{kHz}$ to $80 \mathrm{MHz}(9953 \mathrm{M}$) Tx Unit: MU150121A/B (9953 M) Sampling Oscilloscope: $>20 \mathrm{GHz}$ bandwidth Frame: Appendix VIII compliant (margin reference format)
General Specification	Operating Temperature: 20° to $30^{\circ} \mathrm{C}$ Recommended Calibration Interval: 1 year after shipment and annually thereafter

Precautions for Option-30

This option can only be installed in the following configurations. Other combinations cannot be installed. (The MU150101A is not supported.)
This option is managed by equipment model and serial number. Accordingly, if it is installed in a unit with the same model number but different serial number, it will be disabled. When changing to a configuration that is different from the configuration with the option installed, the MP1590B functions and performance operate normally based on the switched configuration.

```
MP1590B: Network Performance Tester
MU150110A: Multirate Unit
MU150121A/B: 10/10.7G Optical (/Electrical) Transmitter Unit (Install either one.)
MU150123A/B: 10/10.7G Optical (/Electrical) Receiver Unit (Wide)
    (Install either one.)
MU150125A: 10/10.7G Jitter Unit
```

The Transmission Output Jitter is specified in the certificate attached to the option. The recommended calibration interval for Option-30 is 1 year after shipment and annually thereafter.

- MU150110A Multirate Unit
- MU150101A 2.5/2.6G EoS Unit

Model	MU150110A	MU150101A*1
Electrical Interface (1.544 Mbit/s to 155.52 Mbit/s)	Bit Rate PDH/DSn: 1.544 Mbit/s, 2.048 Mbit/s, 8.448 Mbit/s, 34.368 Mbit/s, 44.736 Mbit/s, 139.264 Mbit/s SDH/SONET: 51.84 Mbit/s, 155.52 Mbit/s Code 1.544 Mbit/s: AMI/B8ZS 2.048 Mbit/s, 8.448 Mbit/s, 34.368 Mbit/s: HDB3 44.736 Mbit/s, 51.84 Mbit/s: B3ZS 139.264 Mbit/s, $155.52 \mathrm{Mbit} / \mathrm{s}: \mathrm{CMI}$	
	Connector 1.544 Mbit/s: RJ-45 100Ω Balanced 2.048 Mbit/s: RJ-45 120Ω Balanced 2.048 Mbit/s, 8.448 Mbit/s, 34.368 Mbit/s, $44.736 \mathrm{Mbit} / \mathrm{s}$, 51.84 Mbit/s, 139.264 Mbit/s, $155.52 \mathrm{Mbit} / \mathrm{s}: ~ B N C ~ 75 \Omega$	Connector 1.544 Mbit/s: BANTAM 100Ω Balanced 2.048 Mbit/s: 3 pin Siemens 120Ω Balanced 2.048 Mbit/s, 8.448 Mbit/s, 34.368 Mbit/s, 44.736 Mbit/s, 51.84 Mbit/s, 139.264 Mbit/s, 155.52 Mbit/s: BNC 75Ω
	Level ANSI T1.102 (1.544 Mbit/s, 44.736 Mbit/s) ITU-T G.703 (2.048 Mbit/s, 8.448 Mbit/s, 34.368 Mbit/s, $139.264 \mathrm{Mbit} / \mathrm{s})$ DSX Output ($1.544 \mathrm{Mbit} / \mathrm{s}$): 0/655 feet DSX Output (44.736 Mbit/s, 51.84 Mbit/s): 0/450/900 feet Monitor Gain $20 \mathrm{~dB}, 26 \mathrm{~dB}: 1.544 \mathrm{Mbit} / \mathrm{s}$, 2.048 Mbit/s, 8.448 Mbit/s, 34.368 Mbit/s, 44.736 Mbit/s, 51.84 Mbit/s 20 dB : $139.264 \mathrm{Mbit} / \mathrm{s}$, $155.52 \mathrm{Mbit} / \mathrm{s}$	

*1: For the specifications when using the EoS mode with the MU150101A, see the items for MU150101A-06, and MU150101A-07 options.
*2: Not supported with MU150101A
*3: Excludes deviations caused by conformance to Laser Notice No. 50 dated June 24, 2007
*4: To use the optical output ($51.84 \mathrm{Mbit} / \mathrm{s}$ to $2666.057 \mathrm{Mbit} / \mathrm{s}$) attach a $50-\Omega$ terminator (J0994) to the SMA connector used for the data output of the electrical interface (9953.28M, 10312.5M, 10709.225 Mbit/s).

Safety measures for laser products

This product complies with optical safety standards in 21CFR1040.10 and IEC 60825-1; the following descriptive labels are affixed to the product.

- MU150110A-005 OTU1/OTU2
- MU150110A-006 11.1G (OTN specification only)
- MU150101A-05 OTU1

Option	MU150110A-005	MU150110A-006	MU150101A-05*1
Bite Rate	10709.225 Mbit/s, 2666.057 Mbit/s	11049.107 Mbit/s, 11095.727 Mbit/s	2666.057 Mbit/s
Frame	10709.225 Mbit/s: OTU2 2666.057 Mbit/s: OTU1	11049.107 Mbit/s: OTU1e 11095.727 Mbit/s: OTU2e	2666.057 Mbit/s: OTU1
No Frame	10709.225 Mbit/s, 2666.057 Mbit/s	$11049.107 \mathrm{Mbit} / \mathrm{s}$, 11095.727 Mbit/s	2666.057 Mbit/s
Test Pattern	PRBS, Word, All 0, All 1 PRBS No Frame: $2^{15}-1,2^{23}-1,2^{31}-1$ PRBS Mapping: $2^{15}-1,2^{23}-1,2^{31}-1$ SDH/SONET Mapping: According to SDH/SONET Mapping Invert On/Off Word: 16 -bit Programmable (Mark Ratio $1 / 2$ at No Frame) Transmit/Receive: An independent setup is possible		
Overhead Preset	OTU, ODU, OPU, FAS (except Parity Byte, MFAS and JC Byte) TTI (SPAI [1] - [15], DAPI [1] - [15]) can be set character. PT is set automatically according to mapping (can be edit).		
FEC	$\text { G.709, RS }(255,239)$On/Off		
Justification	Generation Measurement Item: $+\mathrm{JC},-\mathrm{JC}$ Action: \pm Justification Timing: Single, Burst (2 to 64$)$		
Payload Offset	Offset Range: $\pm 65.9 \mathrm{ppm} / 0.1 \mathrm{ppm}$ step set at Async. Mapping.		
Error Addition/ Measurement	FAS, BIP-8 (SM, PM, TCM1-6), BEI (SM, PM, TCM1-6), Bit All (Addition for OTN Frame only), Bit, Corrected Error Bit (Measurement only), Uncorrectable FEC Block (Measurement only)		
Error Addition Timing	Single, Rate, All, Alternate, Random (Only Bit All) Rate Fix Rate: 1×10^{-n} (n: 3 to 9), User Program: $\mathrm{A} \times$ 10 $^{-\mathrm{B}}$ (A: 1.0 to 9.9, B: 2 to 10) Alternative Error Frame: 0 to 64000, Normal Frame: 1 to 64000 Random: Poisson distributed error insertion (only at Bit all) Specify insertion bit position at parity error insertion		
Alarm Addition/ Measurement	LOF, OOF (Measurement only), LOM, OOM (Measurement only), BDI (SM, PM, TCM1-6), AIS (OTU, ODU, Client*2), ODU-OCI, ODU-LCK, ODU-PLM (Measurement only), IAE (SM, TCM1-6), TIM (SM, PM, TCM1-6), LTC (TCM1-6), BIAE (SM, TCM1-6)		
Alarm Addition Timing	Alternative, All, Burst, Single Alternative Error Frame: 0 to 64000, Normal Frame: 1 to 64000		
Monitor	All OH (OTU, ODU, OPU), TTI, FTFL, Payload Multi-frame supported of TTI and FTFL.		
Overhead Sequence Capture	Capture Byte: APS/PCC Size: 64 Sequence Repeat: Max. 8000 Frames/Sequence		
Overhead Test	OTU/ODU/OPU 1 Byte, FAS, APS/PCC, TCM1-6, SM, PM, GCC0-2, EXP (except Parity Byte, MFAS and JC Byte) Timing: Alternative (A: 1 to 8000 times, B: 1 to 8000 times), A and B set up to 256 frames		
Overhead BERT Test	GCC0-2, OH 1 Byte (except Parity Byte) Error Addition: Bit (Only Single) Pattern: PRBS 211 -1, PRBS $2^{15}-1$ (Invert) Measurement: Bit Error, Sync Loss		
Overhead Add/Drop	Test Byte: GCC0-2		

*1: MU150101A does not support OTN measurement in EoS mode.
*2: Not supported with MU150101A-05.

- MU150110A-006 11.1G (10G Ethernet specification only)
- MU150110A-008 10.3G

Option	MU150110A-006 MU150110A-008
Bit Rate	11049.107 Mbit/s, 11095.727 Mbit/s
Frame	11049.107 Mbit/s: OTU1e 11095.727 Mbit : OTU2e $10312.5 \mathrm{Mbit} / \mathrm{s}: 10 \mathrm{G}$ Ethernet
No Frame	
Ethernet Settings (General)	Maximum Frame Size: 64 bytes to 16,384 bytes IPG Violation Threshold: 5 to 12 bytes Link Fault Signaling Reply: On/Off Flow Control Receive: On/Off
Ethernet Settings (Frame)	Frame Length: 48 bytes to 16,384 bytes Auto, Fixed, Increment, Random selectable *Only Auto or Fixed when test frame selected in data field VLAN: On/Off TPID, User Priority, CFI editable VLAN ID settable (Fixed, Increment, Decrement, Random) Background Data: All 0, All 1 Preamble Size: 4 bytes to 255 bytes (can edit all bytes except 1-byte header) MAC Address: Separate source and destination address settings Type: Fixed, Increment, Decrement, Random Mask: Set in 4-bit units (when Increment, Decrement, Random selected) Ethernet Type: Editable Data Field: All 0, All 1, Word 16, Increment, Decrement, Programmable, Test Frame Offset: 0 to 16,365 bytes Error Insertion: FCS Error, Fragments, Undersize, Oversize, Oversize \& FCS Error
User Defined Counter Settings	Separate User Defined Counter 1, 2 settings Pattern 1: Don't care, Match, Mismatch Pattern 1: Don't care, Match, Mismatch Error: Don't care, Match, Mismatch User Defined Counter 1, 2 common setting Pattern 1, 2 : Pattern: 128 bits Mask: Byte units Base Position: Top of Frame Offset: 0 to 16,368 bytes Preset Pattern: MAC DA, MAC SA, Ethernet Type Error Type: Good frame, FCS error, Undersize, Fragments, Oversize, Oversize \& FCS error, Sequence error
Stream Control	Tx Mode: Repeat, Burst (Repeat only at Latency and BER measurements) Burst Length: 1 to 65,536 frames Gap Insertion Type: Fixed, Random Value: 7.2 ns to 120 s (0.8 ns resolution)
Error Insertion (PCS)	Type: Sync header, Block type Timing: Single, Burst, Rate, Alternate, All Burst: 1 to 64,000 Rate: $1.0 \mathrm{E}-3$ to $0.1 \mathrm{E}-11$ Alternate: Error: 1 to 64,000 , Normal: 0 to 64,000
BER Test	Type: Framed, No frame Test Pattern: All 0, All 1, Word 16, PRBS23 (Invert On/Off), PRBS31 (Invert On/Off), CJPAT (fixed gap and frame length), CRPAT (fixed gap and frame length) Error Insertion Type: Bit Timing: Single, Rate Rate: 1.0E-4 to $1.0 \mathrm{E}-9$ MAC Address (only Framed mode) Separate source and destination address settings Type: Fixed, Increment, Decrement, Random Mask: Set in 4-bit units (when Increment, Decrement, Random selected) Gap Insertion Type: Fixed, Random Value: 7.2 ns to 120 s (0.8 ns resolution) Frame Length: 48 bytes to 16,384 bytes Fixed, Increment, Random selectable

Option	MU150110A-006 MU150110A-008
PCS Test	Test Mode: Pattern, 66B programmable data Pattern Pattern: Pseudo-random, Square wave, PRBS31 Seed: Seed A, Seed B (editable) Data: LF, All 0 66B Programmable Data Size: 1 to 256 Block Error Insertion (only Pattern mode) Type: Bit Timing: Single, Rate Rate: 1.0E-3 to 1.0E-11 PCS Capture Block No.: 4,096 max. (decode) Filter/Trigger Settings On/Off Sync header: Don't care, Match, Mismatch Block type: Don't care, Match, Mismatch Error: Don't care, Match, Mismatch Alarm: Don't care, Match, Mismatch (trigger only) External: Don't care, Match, Mismatch (trigger only) Filter/Trigger Condition Sync header: Data (01), Control (10) Block type: IEEE802.3, Start, Terminate, Ordered_set, Programmable Error: No error, Sync header, Errored block, Block type, IPG violation Alarm: No alarm, Unlock Combination: And Trigger Position: Top, Middle, Bottom
Latency	MAC Address Separate source and destination address settings Type: Fixed, Increment, Decrement, Random Mask: Set in 4-bit units (when Increment, Decrement, Random selected) Gap Insertion Type: Fixed, Random Value: 7.2 ns to 120 s (0.8 ns resolution) Frame Length: 48 bytes to 16,384 bytes Selectable at Fixed Measurement Result Display: Current, Maximum, Minimum, Average, Frame Count Current, Average, Frame Count: Test frame at 1 sec sampling Maximum, Minimum: All received test frames
Link Fault Signaling	Send Data Signal Pattern: Remote fault signal, Local fault signal, Edit signal (only Lane 1, 2, 3 editable) LFS Capture Column No.: 512 max. (decode) Trigger Setting: On/Off (settable pattern) Display Filter: All, Sequence only
Counters	Error/Alarm PCS: Link down, Unlock, Hi-BER, Pattern sync, Sync header, Errored block, Code, Block type, IPG violation, Pattern block, Pattern bit Ethernet: Oversize, Oversize \& FCS error, Undersize, Fragments, FCS error, Sequence error BER: Sync., Bit Count: Transmitted/Received Frame, Transmitted/Received Byte, Transmitted/Received Test Frame, Transmitted/Received RF Signal, Transmitted/Received LF Signal, Received User Defined 1, Received User Defined 2, Received Pause, Received Capture Filter, Received Capture Trigger Rate: Transmitted/Received Frame (fps), Transmitted/Received Bit (\%), Transmitted/Received Bit (bit/s), Transmitted/Received Rate (\%), Received User Defined 1 (fps), Received User Defined 2 (fps)

- MU150110A-010 Multichannel Measurement*1

Bit Rate	51.84 Mbit/s, 155.52 Mbit/s, 622.08 Mbit/s, 2488.32 Mbit/s, 9953.28 Mbit/s
Frame	51.84 Mbit/s: SDH/SONET 155.52 Mbit/s: SDH/SONET 622.08 Mbit/s: SDH/SONET 2488.32 Mbit/s: SDH/SONET 9953.28 Mbit/s: SDH/SONET
Mapping	Auto-search: Auto-detect Rx mapping Unequipped: Selectable for each channel (On/Off) Measurement: Selectable for each channel (On/Off)
Test Pattern	PRBS, Word 16, All 0, All 1 PRBS: $2^{15}-1,2^{23}-1,2^{31}-1$, Invert On/Off Independent setting for each channel but Word 16 pattern shared by all channels
Overhead Preset	SOH/TOH/POH: All bytes (except Parity, K1/K2, and H1/H2/H3) Independent setting for all channels
Error Addition	Simultaneous insertion into multichannels Selectable On/Off addition to each channel Shared Type and Timing for all channels PDH/DSn: Bit info SDH: FAS, B1, B2, HP-B3, LP-B3, BIP-2, MS-REI (M0/M1), HP-REI, LP-REI, Bit all, Bit info SONET: FAS, B1, B2, HP-B3, LP-B3, BIP-2, REI-L (M0/M1), REI-P, REI-V, Bit all, Bit info Timing: Rate, Alternative, Single, Burst Rate: Fix Rate: 1×10^{-n} ($\mathrm{n}: 3$ to 9), User Program: $\mathrm{A} \times 1^{-\mathrm{B}}$ (A: 1.0 to 9.9, step 0.1, B: 2 to 10) Alternative: Error Frame: 0 to 64,000, Normal Frame: 1 to 64,000 Specify insertion bit position at B1, B2, B3, BIP-2 error insertionple
Error Measurement	Simultaneous measurement of multiple channels PDH/DSn: Bit SDH: Frame, B1, B2, HP-B3, LP-B3, BIP-2, MS-REI (M0/M1), HP-REI, LP-REI, Bit SONET: Frame, B1, B2, HP-B3, LP-B3, BIP-2, REI-L (M0/M1), REI-P, REI-V, Bit
Alarm Addition	Simultaneous insertion into multiple channels Selectable On/Off addition to each channel Shared Type and Timing for all channels PDH/DSn: LOF, AIS SDH: LOS, LOF, RS-TIM, MS-AIS, MS-RDI, AU-AIS, AU-LOP, HP-RDI, HP-ERDIP, HP-ERDIS, HP-ERDIC, HP-TIM, HP-UNEQ, HP-SLM, TU-AIS, TU-LOP, TU-LOM, LP-RDI, LP-ERDIP, LP-ERDIC, LP-ERDIC, LP-RFI, LP-TIM, LP-UNEQ, LP-SLM SONET: LOS, LOF, RS-TIM, AIS-L, RDI-L, AIS-P, LOP-P, RDI-P, ERDIP-P, ERDIS-P, ERDIC-P, TIM-P, UNEQ-P, PLM-P, AIS-V, LOP-V, LOM-V, RDI-V, ERDIP-V, ERDIC-V, ERDIC-V, RFI-V, TIM-V, UNEQ-V, PLM-V Timing: Single, Burst, Alternative, All (only All for PDH) Alternative: Error Frame: 0 to 64,000 , Normal Frame: 1 to 64,000
Alarm Measurement	Simultaneous measurement of multiple channels PDH/DSn: LOF, AIS (only status display) Sync. SDH: LOS, Generic-AIS, LOF, OOF, RS-TIM, MS-AIS, MS-RDI, AU-AIS, AU-LOP, HP-RDI, HP-ERDIP, HP-ERDIS, HP-ERDIC, HP-TIM, HP-UNEQ, HP-SLM, TU-AIS, TU-LOP, TU-LOM, LP-RDI, LP-ERDIP, LP-ERDIC, LP-ERDIC, LP-RFI, LP-TIM, LP-UNEQ, LP-SLM, Sync. loss SONET: LOS, Generic-AIS, LOF, OOF, RS-TIM, AIS-L, RDI-L, AIS-P, LOP-P, RDI-P, ERDIP-P, ERDIS-P, ERDIC-P, TIM-P, UNEQ-P, PLM-P, AIS-V, LOP-V, LOM-V, RDI-V, ERDIP-V, ERDIC-V, ERDIC-V, RFI-V, TIM-V, UNEQ-V, PLM-V, Sync. loss
Monitor	SOH/TOH/POH, Path Trace, K1/K2 Byte, AU/STS, TU/VT Pointer, Payload
Path Monitor	Displays errors and alarms at each channel
Through	Transparent, OH Overwrite
Delay Measurement	Simultaneous measurement of multiple channels Measurement Period: $0.5,1,2,5,10 \mathrm{~s}$ Measurement Range: 0 to $10,000,000.0 \mu \mathrm{~s}(0.1 \mu \mathrm{~s}$ step $), ~>$ Timeout
Path Trace	Independent setting for all channels but CRC On/Off shared by all channels J0, J1, J2 byte set arbitrarily 16 bytes (CRC On), 64 bytes (CRC Off, J1 only) Auto-detecion of path trace pattern
Pointer Generation	Independent setting for all channels AU/STS, TU/VT Pointer Action: NDF, \pm PJ (Pointer Justification) PJC Timing: Manual, Burst (2 to 64)
Pointer Measurement	Independent setting for all channels AU/STS, TU/VT Pointer, C Bit Measurement Item: NDF, +PJC, -PJC, Cons, C, C1/C2
APS Test	Switching Time Measurement Simultaneous measurement of multiple channels Measurement Time: 0.1 ms to 2000.0 ms , Timeout (exclude Time for Frame/Pointer Synchronization) Threshold: 1 ms to 100 ms (1-ms steps) Measurement Result: Current, Maximum, Minimum, Average (ms) OK (Pass), NG (Fail) (Count)
Log Function	Log Period: 1 s Target: Events (selectable items), APS Test

*1: This option and the Ethernet unit (MU120XXXX) cannot be used simultaneously.
Set the Multichannel Option setting of the Setup Utility to On when using this option with the MU150110A and Ethernet unit installed in the MP1590B.

- MU150101A-06 GFP-F/LEX/LAPS
- MU150101A-07 POS

Option	MU150101A-06	MU150101A-07
Optical Interface	Bit Rate: 155.52 Mbit/s, 622.08 Mbit/s, $2488.32 \mathrm{Mbit} / \mathrm{s}$	
Encapsulation	GFP-F, LEX, LAPS (X.86)	PPP, CiscoHDLC, MAPOS version1, MAPOS 16
Encapsulation Setting	GFP Scramble: On/Off (supports independent Core Header and Payload Area setup) Descramble: On/Off (supports independent Core Header and Payload Area setup) FCS: 32 Bit Receive Conditions Extension Header Size Extension Header Size other than NULL or Linear 2 Byte to 58 Byte (except eHEC) cHEC Presync Times: 1 to 16 CSF Recovery: 1 to 16 Payload Header Checking: On/Off Ethernet MAC Address Ethernet Maximum Frame Size (64 Byte to 65535 Byte) LAPS Scramble/Descramble: On Only Minimum Flag Length: 1 Byte/2 Byte FCS: 32 Bit Rate Adaptation X/Y (Add X Byte Every Y Frame Byte) X: 0 to 1024 Byte/16 Byte Y: 4096/8192/16384/32768/65536 Ethernet MAC Address Ethernet Maximum Frame Size (64 Byte to 65535 Byte) LEX Scramble/Descramble: On/Off Minimum Flag Length: 1 Byte/2 Byte FCS: 16 Bit Negotiation On/Off, Restart, Retry, Abort, Max-Receive-Unit (MRU: Default 1500), Magic-Number (Random), IPCP (Send this port IP Address) Retry (1 to 10), Time Out (1 to 180) PPP-LEX: Send Startup Command Opt On/Off, MAC Address	PPP/CiscoHDLC/MAPOS version1/MAPOS 16: Scramble: On/Off Descramble: On/Off Minimum Flag Length: 1 Byte/2 Byte FCS: 16 Bit/32 Bit Negotiation: (PPP only; MRU enabled for all) On/Off, Restart, Retry, Abort, Max-Receive-Unit (MRU: default1500), Magic-number (random), IPCP (Send this port IP address) Retry (1 to 10), Time Out (1 to 180)
Frame Setting	FCS (LEX): 16 Bit MAC Address: Fixed, Increment, Decrement, Random (Changeable parts specified in 4 Bit units) IP Address: Fixed, Increment, Decrement, Random VLAN Tag*1: Fixed, Increment, Decrement, Random Protocol Editing: GFP, LEX, LAPS, Ethernet, ARP, IPv4, IGMP/IPv4, ICMP/IPv4, TCP/IPv4, UDP/IPv4, RIP/UDP/IPv4, DHCP/UDP/IPv4, IPv6, IPX, IS-IS, MAC Control Frame, LEX Control Packet	FCS: CRC32, CRC16 IP Address: Fixed, Increment, Decrement, Random Protocol Editing: PPP, CiscoHDLC, MAPOS v1, MAPOS 16, ARP, IPv4, IGMP/IPv4, ICMP/IPv4, TCP/IPv4, UDP/IPv4, RIP/UDP/IPv4, DHCP/UDP/IPv4, IPv6, IS-IS
	MPLS Label*1: Up to 10 MPLS labels appended. Data Field: All1, All0, Alternate1/0 (by bit, 2 bit, nibble, byte, 2 byte) Increment by byte*2, Decrement by byte*2, Random by bytes*2, PRBS9*2, [Only Data field 1] Time Stamp*2, Sequence Number*2, Programmable, Test frame, Test Frame for MU120101A	
Frame Length	Fixed: GFP 8,12,16 Byte to 65535 Byte PPP/LEX/LAPS 8 Byte to 65535 Byte (Packet Length + IFG ≥ 16 Byte) Random: 64 Byte to 65535 Byte (IFG ≥ 16 Byte)*3 Increment: 64 Byte to 65535 Byte (IFG ≥ 16 Byte)*3 Auto: Sets frame size to minimum required for selected protocols.	
Stream Setting	Distribution Patterns: Continuous, Continuous Burst, Stop after this Stream, Next Stream, Jump to Stream, Jump to Stream for count (Jump to stream No. 1 to 256, Loop count: 1 to 16000000, Frames per burst: 1 to 16000000, Bursts per stream: 1 to 16000000) Inter Frame Gap: GFP 0 ns to 2 minutes (13.4 ns step), PPP/LEX/LAPS 3.3 ns to 2 minutes (3.3 ns step) Random*4: 53.5 ns to 2 minutes (Frame Length ≥ 64 Byte) Inter Burst Gap: GFP 53.5 ns to 2 minutes (13.4 ns step), PPP/LEX/LAPS 3.3 ns to 2 minutes (3.3 ns step) Inter Stream Gap: GFP 53.5 ns to 2 minutes (13.4 ns step), PPP/LEX/LAPS 3.3 ns to 2 minutes (3.3 ns step)	
Error Addition	GFP: cHEC error, correctable cHEC error, tHEC error, correctable tHEC error, eHEC error, correctable eHEC error, FCS error LAPS (X.86): FCS error, Aborted Sequence LEX: FCS error, Fragments error, Undersize error, Oversize error, Oversize \& FCS error, Aborted Sequence Ethernet: FCS error, Fragments error, Undersize error, Oversize error, Oversize \& FCS error	PPP: FCS Error, Undersize, Oversize, Fragments Error, Oversize \& FCS Error, Aborted Frame
	Network layer: IP header checksum Error, TCP/UDP checksum error,	RBS9 Error (option-11)

Option	MU150101A-06	MU150101A-07
Counter	GFP: Transmitted Frame (frames and fps), Transmitted Byte, Transmitted Bit Rate (\% and bit/s), Received Frame (frames and fps), Received Byte, Received Bit Rate (\% and bit/s), Transmitted Rate (\%) Received Rate (\%), cHEC Error, correctable cHEC Error, tHEC Error, correctable tHEC Error, eHEC Error, FCS Error, Server Signal Fail Interval, Client Loss of Sync Frame, Client Loss of Sync Interval, Client Loss of Signal Frame, Client Loss of Signal Interval	PPP: Transmitted Bit Rate (bit/s and \%), Transmitted Rate (\%), Transmitted Bytes After Stuffing, Transmitted Byte, Transmitted Frame(frames and fps), Received Bit Rate (bit/s and \%), Received Rate (\%), Received Bytes Before Destuffing, Received Byte, Received Frame (frames and fps), Oversize, Oversize \& FCS Error, Undersize, Fragments, FCS Error, Aborted Frame
	LAPS (X.86): Transmitted Frame (frames and fps), Received Frame (frames and fps), Transmitted Byte, Transmitted Bytes After Stuffing, Transmitted Bit Rate (\% and bit/s), Received Byte, Received Bytes Before Destuffing, Received Bit Rate (\% and bit/s), Transmitted Rate (\%), Received Rate (\%), FCS error, Fragments, Undersize, Oversize, Oversize \& FCS Error, Aborted frame LEX : Transmitted Frame (frames and fps), Transmitted Byte, Transmitted Byte After Adaptation, Transmitted Bytes After Stuffing, Transmitted Bit Rate (\% and bit/s), Received Frame (frames and fps), Received Byte, Received Byte Before Adaptation, Received Bytes Before Destuffing, Received Bit Rate (\% and bit/s), Transmitted Rate (\%), Received Rate (\%), FCS error, Aborted frame	
	SDH/SONET: B1, B2, MS-REI, Bit Info [Count/Rate] LOS, LOF, OOF, MS-AIS, MS-RDI [Count/Second] B3, BIP2, HP-REI, LP-REI, SQM [Count/Rate]: (with HO/LO VCAT Option) AU-AIS, AU-LOP, HP-SLM, HP-RDI, HP-UNEQ, VCAT-LOM, OOM1 (HO), OOM2 (HO) [Count/Second]: (with HO VCAT Option) TU-AIS, TU-LOP, TU-LOM, LP-RDI, LP-SLM, LP-UNEQ, Pattern Sync. Loss, VCAT-LOM, OOM (LO) [Count/Second]: (with LOVCAT Option) GID, CRC8 (HO), CRC3 (LO) [Count/Rate] LOA [Count/Second]: (with LCAS Option) Justification: NDF, +PJC, - PJC, Consecutive [Count/Rate], PPM Bulk: Bit Info [Count/Rate], Pattern Sync. Loss [Second]	
	Ethernet: Transmitted Ethernet Frame (packets and fps), Transmitted Ethernet Byte, Received Ethernet Frame (packets and fps), Received Ethernet Byte, Transmitted Ethernet Bit Rate (\%), Received Ethernet Bit Rate (\%), Ethernet FCS error, Ethernet Fragments error, Ethernet Undersize error, Ethernet Oversize error, Ethernet Oversize \& FCS error, Transmitted ARP Reply, Transmitted ARP Request, Received ARP Reply, Received ARP Request	- -
	Other: Transmitted IPv4 Packet (packets and pps), Received IPv4 Packet (packets and pps), IPv4 Header Checksum Error, Received UDP Packet (packets and pps), Received TCP Packet (packets and pps), TCP Checksum Error, UDP Checksum Error Capture Trigger, Capture Filter, Transmitted Ping Reply, Transmitted Ping Request, Received Ping Reply, Received Ping Request, QoS 0 to 7 (packets and fps), User defined $\times 2$ (packets and fps), Transmitted Test Pattern, Received Test Pattern Packet Error: Sequence Error, PRBS Frame Error [Count/Rate], PRBS Bit Error (with MP1590B-11)	
Frame Arrival Time	Time Resolution: $1 \mu \mathrm{~s}, 10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}, 1 \mathrm{~s}$	
QoS Counter	Using QoS described below, 8-level Priority Frame Count: IEEE802.1D VLAN Tag User Priority Field or IPv4 ToS Field	
Unframed BER Test	Test Pattern: PRBS (223-1, $2^{31}-1$) Error Insertion: Bit Unit Error Insertion Timing: Single Error, Fix Rate, User Program Fix Rate: $1 \times 10^{-n}(\mathrm{n}: 3$ to 9$)$, User Program: $\mathrm{A} \times 10^{-\mathrm{B}}$ (A: 1.0 to $9.9, \mathrm{~B}: 2$ to 10)	
Capture Buffer	256 Mbyte	
Capture Filter	At following conditions, Capture Filter Condition Settings: Destination MAC Address*5, Source MAC Address*5, Destination IP Address, Source IP Address, 32-bit Pattern (settable Bit Length and Offset) $\times 2$, Error Conditions	
Capture Trigger	At following conditions, Capture Trigger Condition Settings: Destination MAC Address*5, Source MAC Address*5, Destination IP Address, Source IP Address, 32-bit Pattern (settable Bit Length and Offset) $\times 2$, Error Conditions, Traffic Over, Latency Over, External Trigger Input	
Protocol Decode	ARP, CiscoHDLC, DHCP, DVMRP, Ethernet, GFP, ICMP, ICMPv6, IGAP, IGMP, IPCP, IPv4, IPv6, IPv6CP, IPX, IS-IS, LAPS (X.86), LCP, LDP, LEX, LLC, MAC Control Frame, MAPOS, MPLS, MPLSCP, OSPFV2, PPP, PPP-LEX, RIP, RSVP, SNAP, TCP, UDP, VLAN, Test Frame	
Protocol Emulation	ARP, PPP, ICMPv4 (PING), IGMP	
Traffic Monitor	Switch IP packet count for 64 streams max. and 64 protocols max.	
Traffic Map	Switch IP flow for 256 streams max.	
Service Disruption Time	Measure time when frames not received; resolution depends on Tx signal frame length and IFG	

*1: VLAN tag and MPLS labels cannot be used simultaneously.
*2: This function causes a TCP/UDP checksum error when using TCP/ UDP frames.
*3: Increment and random frame length can be used only when none chosen as protocol.
*4: Random setting is enabled only when frame length is more than 64 bytes.
*5: Supported only at GFP/LAPS/LEX mapping

- MU150101A-11 HO Virtual Concatenation
- MU150101A-12 LO Virtual Concatenation

- MU150101A-13 LCAS

Sequence Generation	Number of sequence: 64 Timing: Seq. Gap, Send time Command (Title): ADD, Remove, Tmp. Remove, User Time out: 1 to 8,000 multi frames CTLR value: IDEL, ADD, NORM, DNU, REMOVE, EOS Send Time: 1 to 8,000 multi frames Two or more channels selected as command target channels
Negotiation Setting	MST and RS-Ack values set in USER command mode On/Off On: Wait Time (1 to 8000 Multi-frames) At MST-Fail Rx, either can select convert Tx CTRL signal to DNU or send IDLE as is Select Available/Unavailable for each member Off: Select OK/Fail at Tx MST at each member
Source/Sink Summary	Displays LCAS status and differential delay for source and sink sides on one screen. Mode: Detail/State Scope: VCG Member Display Item Source Side Detail/State: PLCT, TLCT, XMT, XPT, XAT, Rs-Ack (for Rx) UMST Detail: Ch, State, SQ, Ctrl, MST (For Rx) Differential Delay State: Channel position and state (CTRL) of Tx VCG members Sink Side Detail/State: PLCR, TLCR, MND, SQNC, XMR, XPR, XAR, Rs-Ack (For Tx) Detail: Ch, State, SQ, Ctrl, Differential Delay, LOM, SQM, GID State: Channel position and state (CTRL) of Rx VCG members Alarm Signal: PLCT, TLCT, UMST, PLCR, TLCR, MND, SQNC, LOM, SQM, GID
Monitor	SQ, CH, CTRL, RS-Ack (Invert or Not), MST condition (can select SQ)
Capture	OH: H4/K4 Trigger: Change value of SQ/CTRL/MST/RS-Ack, External Trigger Position: 1 to 64 Display: SQ, CTRL, RS-Ack, MST Sequence: Move to next sequence when detect change of CTRL value, MST value, RS-Ack value of selected member Maximum Number of Sequence: 64 (1 to 8000 Multi-frames per sequence)

- MU150101A-14 Differential Delay

Differential Delay Measurement	Group Delay (ms), Path Trace Table View: CH, SQ, MF, Pointer, $\Delta \mathrm{t}$ (ms), State (Earliest, Latest) Sort by CH or SQ or $\Delta \mathrm{t}(\mathrm{ms})$ is possible. Chart View : Display Δt as graph and zoom and output as bitmap or metafile Sort by CH or SQ or $\Delta \mathrm{t}(\mathrm{ms})$ is possible.
Differential Delay Addition	Generation range: 0 to 512 ms Equalization range: 0 to 256 ms NDF (MFI, Pointer), +PJC and -PJC set independently for each VCG member Sweep Function Target: Set two A and B points at each VCG member Target Delay Setting: MFI, Pointer Sweep Sequence: Sequentially for each specified VCG member or simultaneously for specified VCG members Sweep Mode: to A, to B, to A to B, to A to B to A Repeat: 1 to 99 (to A to B to A mode only) PJC Interval: 4 to 8000 frames Sweep Priority: AU or TU (AU4-VC3-Xv, AU4/3-VC12-Xv, AU4/3-VC11-Xv only) Estimated Time, Elapsed Time displays Tx Delay Parameters (Present Value): Ch, MFI, Pointer (AU, TU), Δt, Group Delay Rx Delay Parameters: Ch, SQ, MFI, Pointer (AU, TU), $\Delta \mathrm{t}$, Group Delay, State (Earliest, Latest) NDF, SS: Set shared NDF value and SS values for all members

- MU150121A 10/10.7G Optical Unit (Tx)
- MU150121B 10/10.7G Optical/Electrical Unit (Tx)

Bit Rate	9953.28 Mbit/s, 10312.5 Mbit/s (MU150121B Only), 10709.225 Mbit/s Accuracy: Depends on frequency accuracy of MU150110A and external input frequency Requires MU150110A-008 at $10312.5 \mathrm{Mbit} / \mathrm{s}$	
Optical Output	Peak Wavelength: $1310 \mathrm{~nm} \pm 20 \mathrm{~nm}$ (Option-01, 03) $1550 \mathrm{~nm} \pm 20 \mathrm{~nm} \text { (Option-02, 03) }$ Spectrum Range: $\leq 0.5 \mathrm{~nm}$ (@-20 dB) Side Mode Suppression Ratio: $\geq 30 \mathrm{~dB}$ Extinction Ratio: $\geq 10 \mathrm{~dB}$	```Output Power MU150121A: 0 to +3 dBm MU150121B: -1 to +3 dBm Code: NRZ Connector: FC-PC (SMF) Replaceable```
Electrical Input (Data, Clock)	Input Level Data H: -0.2 to $0 \mathrm{~V}, \mathrm{~L}:-1.5$ to -0.85 V Clock 0.6 to $1.3 \mathrm{Vp}-\mathrm{p}$	Code: NRZ Impedance: 50Ω Connector: SMA
Electrical Differential Output (Data, / $\overline{\mathrm{Data}}$) (MU150121B Only)	Output Level: Variable (See next item.) Tr/Tf: 25 ps (typ.) Compliant with SDH VC4-64c, SONET STS192c, PRBS 223-1 patterns	Data, / $\overline{\text { Data }}$ Phase Difference: $\leq 10 \mathrm{psec}$ Code: NRZ Impedance: 50Ω Connector: SMA
Variable Electrical Differential Output (MU150121B Only)	Variable Range: 150 to 550 mVp -p (Single) Simultaneously variable Data, and $/ \overline{\mathrm{Data}}$	Step: 10 mV Voh: 0 V
Variable Optical Attenuator (Option-04)	Variable Range: 0 to 20 dB Accuracy: $\leq \pm 0.5 \mathrm{~dB}(0$ to 10 dB$), \leq \pm 1.0 \mathrm{~dB}(10.1$ to 20 dB) Setting Resolution: 0.1 dB	
Laser Safety	IEC 60825-1: 2007: CLASS 1, 21CFR1040.10*	

*: Excludes deviations caused by conformance to Laser Notice No. 50 dated June 24, 2007
Safety measures for laser products
This product complies with optical safety standards in 21CFR1040.10 and IEC 60825-1; the following descriptive labels are affixed to the product.

- MU150123A 10/10.7G Optical Unit (Rx Wide)
- MU150123B 10/10.7G Optical/Electrical Unit (Rx Wide)

- MU150124B 10.3G Optical/Electrical Unit (Rx Wide)

- MU150125A 10/10.7G Jitter Unit

Ordering Information

Please specify the model/order number, name and quantity when ordering.
The names listed in the chart below are Order Names. The actual name of the item may differ from the Order Name.

Model/Order No.	Name		Model/Order No.	Name
	Main Frame		MU150121A-01	Wavelength $1.31 \mu \mathrm{~m}$
MP1590B	Network Performance Tester		MU150121A-02	Wavelength $1.55 \mu \mathrm{~m}$
	Standard Accessories		MU150121A-03	Wavelength $1.31 / 1.55 \mu \mathrm{~m}$
J0491	Shield Power Cord, 2.6 m*1:	1 pc	MU150121A-04	Optical Output Power Adjustable
F0105	Fuse, $10 \mathrm{~A}^{* 1}$:	2 pcs	MU150121A-40	SC Connector*21
E0010	Side Cover ${ }^{*}$:	1 pc	MU150121B-01	Wavelength $1.31 \mu \mathrm{~m}$
B0329G	Front Cover (for 3/4MW4U)*1:	1 pc	MU150121B-02	Wavelength $1.55 \mu \mathrm{~m}$
Z0847A	MD1230/MP1590 Family Software CD*1, ${ }^{2}$:	1 pc	MU150121B-03	Wavelength $1.31 / 1.55 \mu \mathrm{~m}$
J0617B	Replaceable Optical Connector (FC-PC)*3, *4:	$1 \mathrm{pc} / 2 \mathrm{pcs}$	MU150121B-04	Optical Output Power Adjustable
J0747B	Fixed Optical Attenuator (10 dB, FC connector)*5:	1 pc	MU150121B-40	SC Connector*21
J0747C	Fixed Optical Attenuator ($15 \mathrm{~dB}, \mathrm{FC}$ connector)*${ }^{*}$:	1 pc	MU150123A-05	OTU2
J1003N	Semi-rigid Cable (136.6 mm)*7:	2 pcs	MU150123A-40	SC Connector*21
J1003P	Semi-rigid Cable (96 mm) ${ }^{*}$:	1 pc	MU150123B-05	OTU2
J1003Q	Semi-rigid Cable (75.6 mm) *8, *9:	$1 \mathrm{pc} / 2 \mathrm{pcs}$	MU150123B-40	SC Connector*21
J1003R	Semi-rigid Cable (55.3 mm)*7:	1 pc	MU150124B-40	SC Connector*21
J1003S	Semi-rigid Cable (56.5 mm) ${ }^{10}$:	1 pc	MU150125A-01	Wander Measurement
J1003T	Semi-rigid Cable (67 mm)*11:	2 pcs	MU150125A-05	OTU1/OTU2
J0500A	Semi-rigid Cable $50 \mathrm{cm*11}$:	1 pc	MU150125A-06	10.3G
	Plug-in Units		MU120131A-01	Clock Measurement
MU150110A	Multirate Unit*12, *13		MU120131A-02	PoE
MU150101A	2.5/2.6G Eos Unit*14		MU120131A-12	PoE Retrofit
MU150121A	10/10.7G Optical Unit (Tx)*14		MU120132A-01	Clock Measurement
MU150121B	10/10.7G Optical/Electrical Unit (Tx)*14		MU120138A-01	Clock Measurement
MU150123A	10/10.7G Optical Unit (Rx Wide)		MU120138A-03	Link Fault Signalling*23
MU150123B	10/10.7G Optical/Electrical Unit (Rx Wide)			Software
MU150124B	10.3G Optical/Electrical Unit (Rx Wide)		MX159001B	Network Performance Tester Control Software*24, *25
MU150125A	10/10.7G Jitter Unit		MX159001B-05	Network Performance Tester Control Software (5 licenses)*25
MU120121A	10/100/1000M Ethernet Module*15		MX159001B-08	Network Performance Tester Control Software (8 licenses)*25
MU120122A	Gigabit Ethernet Module*15, *16			Software Options
MU120131A	10/100/1000M Ethernet Module*15		MX159001B-01	RS-232C Contro**26
MU120132A	Gigabit Ethernet Module*15, *16		MX159001B-02	GPIB Control*26
MU120138A	10 Gigabit Ethernet Module*15, *17		MX159001B-03	Ethernet Control*25
	Options			Optional Accessories
MP1590B-01	RS-232C		G0181A	SFP SX 850 nm*27
MP1590B-02	GPIB		G0182A	SFP LX 1310 nm*27
MP1590B-03	LAN		G0183A	SFP LE 1310 nm*27
MP1590B-07	OSPF Protocol		G0184A	SFP LR $1550 \mathrm{nm*27}$
MP1590B-08	MPLS (LDP/CR-LDP) Protocol		G0238A	SFP+ SR 850 nm*28
MP1590B-09	MPLS (RSVP) Protocol		G0239A	SFP+ LR 1310 nm*28
MP1590B-10	RFC2899 Benchmarking Test		G0271A	SFP+ ER $1550 \mathrm{~nm}{ }^{* 28}$
MP1590B-11	Packet BER Test		G0194A	1310 nm XFP Module*29
MP1590B-12	IPv6 Expansion		G0195A	1550 nm XFP Module*29
MP1590B-14	IGAP Protocol		J0796A	ST Connector (replaceable, with protective caps, 1 set)
MP1590B-15	Auto Negotiation Analysis		J0796B	DIN Connector (replaceable, with protective caps, 1 set)
MP1590B-17	Traffic Impairment Emulator*18		J0796C	SC Connector (replaceable, with protective caps, 1 set)
MP1590B-20	Application Traffic Monitor		J0796E	FC Connector (replaceable, with protective caps, 1 set)
MP1590B-28	Ethernet OAM		J0617B	Replaceable Optical Connector (FC-PC)
MP1590B-30	High Precision Jitter Analysis*19		J0747B	Fixed Optical Attenuator (10 dB , FC Connector)
MU150110A-004	Optical Output Power Adjustable*20		J0747C	Fixed Optical Attenuator ($15 \mathrm{~dB}, \mathrm{FC}$ Connector)
MU150110A-005	OTU1/OTU2		J0747D	Fixed Optical Attenuator (20 dB , FC Connector)
MU150110A-006	11.1G		J1049A	Fixed Optical Attenuator (SC, 5 dB)
MU150110A-008	10.3G		J1049B	Fixed Optical Attenuator (SC, 10 dB)
MU150110A-009	Insert/Extract		J1049C	Fixed Optical Attenuator (SC, 15 dB)
MU150110A-010	Multichannel Measurement		J1376A	Fixed Optical Attenuator ($5 \mathrm{~dB}, \mathrm{LC}$ connector)
MU150110A-040	SC Connector*21		J0635A	Optical Fiber Cable (SM, FC-SPC connector both ends), 1 m
MU150101A-01	Wavelength $1.31 \mu \mathrm{~m}$		J0635B	Optical Fiber Cable (SM, FC-SPC connector both ends), 2 m
MU150101A-02	Wavelength $1.55 \mu \mathrm{~m}$		J0635C	Optical Fiber Cable (SM, FC-SPC connector both ends), 3 m
MU150101A-03	Wavelength 1.31/1.55 $\mu \mathrm{m}$		J0660B	Optical Fiber Cord (SM, SC-SC connector), 2 m
MU150101A-04	Optical Output Power Adjustable		J1344A	Optical Fiber Cord (Simplex, SM, LC-LC connector), 1 m
MU150101A-05	OTU1		J1327B	Optical Fiber Cord (Simplex, SM, LC-LC connector), 2 m
MU150101A-06	GFP-F/LEX/LAPS		J1271	Optical Fiber Cord (Duplex, SM, LC-LC connector), 2 m
MU150101A-07	POS		J1272	Optical Fiber Cord (Duplex, SM, LC-SC connector), 2 m
MU150101A-11	HO Virtual Concatenation		J1273	Optical Fiber Cord (Duplex, GI, LC-LC connector), 2 m
MU150101A-12	LO Virtual Concatenation		J1274	Optical Fiber Cord (Duplex, GI, LC-SC connector), 2 m
MU150101A-13	LCAS		J1139A	Optical Fiber Cord (Simplex, SM, LC-FC connector), 1 m
MU150101A-14	Differential Delay*22		J1003N	Semi-rigid Cable (136.6 mm)
MU150101A-40	SC Connector*21		J1003P	Semi-rigid Cable (96 mm)

Model/Order No.	Name
J1003Q	Semi-rigid Cable (75.6 mm)
J1003R	Semi-rigid Cable (55.3 mm)
J1003S	Semi-rigid Cable (56.5 mm)
J0776D	Coaxial Cable (BNC-P-3W • 3D-2W • BNC-P-3W, 50 ת), 2 m
J0322B	Coaxial Cable (11SMA . SUCOFLEX104 - 11SMA), 1 m
J0696A	Coaxial Cable (AA-165-500), 0.5 m
J1268	Semiflexible Coaxial Cable
J1349A	Coaxial Cable, 0.3 m
J1173	6020180 Power Divider
J1059B	Balanced Cable (RJ-45/Siemens 3P), 2 m
J1060B	Balanced Cable (RJ-45/BANTAM 3P), 2 m
J0008	GPIB Cable, 2 m
J1109B	LAN Cable (CAT5, cross), 5 m
J1110B	LAN Cable (CAT5, straight), 5 m
J1275	LAN Cable (CAT5E, straight), 1 m
J1275B	LAN Cable (CAT5E, straight), 5 m
J1275C	LAN Cable (CAT5E, cross), 1 m
J1275D	LAN Cable (CAT5E, cross), 5 m
Z0321A	Keyboard (PS/2)
Z0541A	USB Mouse
Z0284	Adapter Cleaner
Z0838A	Stick Cleaner 1.25 mm (250 pcs/set)
B0336C	Carrying Case (3/4MW4U, 350D)
B0530	Carrying Case caster for B0336C
B0448	Soft Case
B0593A	Blank Panel
B0588A	Rack Mount Kit*30
Z0849A	MD1230/MP1590 Family Manual CD
W2420AE	MP1590B Operation Manual
W2421AE	MX159001B Operation SDH Edition Manual
W2422AE	MX159001B Operation SONET Edition Manual
W2423AE	MP1590B/MP1591A Remote Control Operation Manual
W2134AE	Application Traffic Monitor Operation Manual
W1931AE	Ethernet Module Operation Manual
W3218AE	MU150110A Specifications Operation Manual
W2425AE	MU150101A Specifications Operation Manual
W2426AE	MU150125A Specifications Operation Manual
W2427AE	MU150121/2/3/34A Specifications Operation Manual
W2589AE	MU150121B/123B Specifications Operation Manual
W2590AE	MU150124B Specifications Operation Manual

*1: Supplied with main frame.
*2: CD includes installer, release notes and operation manual.
*3: Supplied with MU150110A, MU150101A, MU150121A/B, MU150123A/B, and MU150124B.
*4: Two pieces of MU150110A, and MU150101A.
*5: Supplied with MU150123A/B, and MU150124A.
*6: Supplied with MU150101A.
*7: Supplied with MU150125A.
*8: Supplied with MU150121A/B, MU150123A/B, and MU150124B.
*9: One piece of MU150123A/B, and MU150124B, and two pieces of MU150121A/B
*10: Supplied with MU150110A, and MU150101A.
*11: Supplied with MU150121B.
*12: Requires XFP module (sold separately). In addition, operation with non-Anritsu modules not guaranteed.
*13: An XFP module (G0194A/G0195A) and fixed optical attenuator (J0747C, J1376A) are required when performing the self-test.
*14: One of Option-01, 02, 03 required.
*15: Order additional J1349A when Ethernet unit is installed simultaneously in SDH/ SONET/OTN/PDH/DSn unit and jitter unit configurations.
*16: Requires SFP module (sold separately). In addition, operation with non-Anritsu modules not guaranteed.
*17: Requires SFP+ module (sold separately). In addition, operation with non-Anritsu modules not guaranteed.
*18: Only ports 1 and 2 of the the MU120121A/122A support the MP1590B-17 Traffic Impairment Emulator option. Moreover, only MU120121A/122A models shipped after March 7, 2008 with the "Supports Opt.17" sticker support the option.
*19: MP1590B-30 option can be added to the main frame before delivery. But it cannot be added after.
*20: Only enabled for optical output signals up to 2.6G.
*21: Exchangeable.
*22: Require one of MU150101A-11 or MU150101A-12.
*23: The MU120138A-03 is supported by the MU120138A.
*24: MP1590B-03 not required. However, the maximum number of MP1590B units that can be controlled simultaneously with one licence is limited o 8.
*25: 32-bit versions of WIndows 2000, XP, 7 are supported.
*26: 32-bit versions of Windows 2000, XP are supprted.
*27: SFP modules sold as single units. Two can be mounted in MU120122A and eight in MU120132A.
*28: SFP+ modules sold as single units. Four can be mounted in MU120138A.
*29: XFP modules sold as single units. One can be mounted in MU150110A.
*30: Rack mount Kit for MP1590B.

B0336C Carrying Case

B0448 Soft Case

- Maintenance Service

Model/Order No.	Name
	Maintenance Service
$* * *$-ES210	2 Years Extended Warranty Service
$* * *$-ES310	3 Years Extended Warranty Service
$* *$-ES510	5 Years Extended Warranty Service

*: Extends standard 1-year warranty service period on new main frame and plug-in units to 2,3 , or 5 years.
Purchased separately at new purchase. (Cannot be purchased mid-contract, at contract renewal or in multi-year combinations.)
***-ES210: MP1590B-ES210, MU150110A-ES210, MU150101A-ES210, MU150121A-ES210, MU150121B-ES210, MU150123A-ES210, MU150123B-ES210, MU150124B-ES210, MU150125A-ES210, MU120121A-ES210, MU120122A-ES210, MU120131A-ES210, MU120132A-ES210, MU120138A-ES210
***-ES310: MP1590B-ES310, MU150110A-ES310, MU150101A-ES310, MU150121A-ES310, MU150121B-ES310, MU150123A-ES310, MU150123B-ES310, MU150124B-ES310, MU150125A-ES310, MU120121A-ES310, MU120122A-ES310, MU120131A-ES310, MU120132A-ES310, MU120138A-ES310
***-ES510: MP1590B-ES510, MU150110A-ES510, MU150101A-ES510, MU150121A-ES510, MU150121B-ES510, MU150123A-ES510, MU150123B-ES510, MU150124B-ES510, MU150125A-ES510, MU120121A-ES510, MU120122A-ES510, MU120131A-ES510, MU120132A-ES510, MU120138A-ES510

/Inritsu

- United States

Anritsu Company
1155 East Collins Blvd., Suite 100, Richardson
TX 75081, U.S.A.
Toll Free: 1-800-267-4878
Phone: +1-972-644-1777
Fax: +1-972-671-1877

- Canada

Anritsu Electronics Ltd.
700 Silver Seven Road, Suite 120, Kanata,
Ontario K2V 1C3, Canada
Phone: +1-613-591-2003
Fax: +1-613-591-1006

- Brazil

Anritsu Eletrônica Ltda.
Praça Amadeu Amaral, 27-1 Andar
01327-010 - Bela Vista - São Paulo - SP - Brazil
Phone: +55-11-3283-2511
Fax: +55-11-3288-6940

- Mexico

Anritsu Company, S.A. de C.V.
Av. Ejército Nacional No. 579 Piso 9, Col. Granada
11520 México, D.F., México
Phone: +52-55-1101-2370
Fax: +52-55-5254-3147

- United Kingdom

Anritsu EMEA Ltd.
200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K.
Phone: +44-1582-433200
Fax: +44-1582-731303

- France

Anritsu S.A

12 avenue du Québec, Bâtiment Iris 1- Silic 612,
91140 VILLEBON SUR YVETTE, France
Phone: +33-1-60-92-15-50
Fax: +33-1-64-46-10-65

- Germany

Anritsu GmbH
Nemetschek Haus, Konrad-Zuse-Platz 1
81829 München, Germany
Phone: +49-89-442308-0
Fax: +49-89-442308-55

- Italy

Anritsu S.r.I.
Via Elio Vittorini 129, 00144 Roma, Italy
Phone: +39-6-509-9711
Fax: +39-6-502-2425

- Sweden

Anritsu AB
Kistagảngen 20B, 16440 KISTA, Sweden
Phone: +46-8-534-707-00
Fax: +46-8-534-707-30

- Finland

Anritsu AB
Teknobulevardi 3-5, FI-01530 VANTAA, Finland
Phone: $+358-20-741-8100$
Fax: +358-20-741-8111

- Denmark

Anritsu A/S
Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark Phone: +45-7211-2200
Fax: +45-7211-2210

- Russia

Anritsu EMEA Ltd.
Representation Office in Russia
Tverskaya str. 16/2, bld. 1, 7th floor
Moscow, 125009, Russia
Phone: +7-495-363-1694
Fax: +7-495-935-8962

- Spain

Anritsu EMEA Ltd.
Representation Office in Spain
Edificio Cuzco IV, Po. de la Castellana, 141, Pta. 8
28046, Madrid, Spain
Phone: +34-915-726-761
Fax: +34-915-726-621

- United Arab Emirates

Anritsu EMEA Ltd.

Dubai Liaison Office

P O Box 500413 - Dubai Internet City
AI Thuraya Building, Tower 1, Suit 701, 7th Floor
Dubai, United Arab Emirates
Phone: +971-4-3670352
Fax: +971-4-3688460

- India

Anritsu India Private Limited
2nd \& 3rd Floor, \#837/1, Binnamangla 1st Stage, Indiranagar, 100ft Road, Bangalore - 560038, India
Phone: +91-80-4058-1300
Fax: +91-80-4058-1301

- Singapore

Anritsu Pte. Ltd.
11 Chang Charn Road, \#04-01, Shriro House
Singapore 159640
Phone: +65-6282-2400
Fax: +65-6282-2533

- P.R. China (Shanghai)

Anritsu (China) Co., Ltd.
Room 2701-2705, Tower A,
New Caohejing International Business Center
No. 391 Gui Ping Road Shanghai, 200233, P.R. China
Phone: +86-21-6237-0898
Fax: +86-21-6237-0899

- P.R. China (Hong Kong)

Anritsu Company Ltd.
Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza,
No. 1 Science Museum Road, Tsim Sha Tsui East,
Kowloon, Hong Kong, P.R. China
Phone: +852-2301-4980
Fax: +852-2301-3545

- Japan

Anritsu Corporation
8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan
Phone: +81-46-296-1221
Fax: +81-46-296-1238

- Korea

Anritsu Corporation, Ltd.
$5 \mathrm{FL}, 235$ Pangyoyeok-ro, Bundang-gu, Seongnam-si,
Gyeonggi-do, 463-400 Korea
Phone: +82-31-696-7750
Fax: +82-31-696-7751

- Australia

Anritsu Pty. Ltd.
Unit 21/270 Ferntree Gully Road, Notting Hill,
Victoria 3168, Australia
Phone: +61-3-9558-8177
Fax: +61-3-9558-8255

- Taiwan

Anritsu Company Inc.
7F, No. 316, Sec. 1, NeiHu Rd., Taipei 114, Taiwan
Phone: +886-2-8751-1816
Fax: +886-2-8751-1817

[^0]: See page 10 for function details, page 13 for the list of functions and page 18 for the specifications of each main frame.

[^1]: *1: Requires MU120131A/32A/38A-01 Clock Measurement option
 *2: Excludes No/Go Check
 *3: Supported by ports 1 and 2. Electrical ports (10/100/1000BASE-T) for MU120121A and optical ports (1000BASE-X) for MU120122A.
 *4: Supports SX/LX/LE/LR for SFP
 *5: Requires MU120138A-03 Link Fault Signalling option

